翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Moore determinant over a finite field : ウィキペディア英語版
Moore matrix
In linear algebra, a Moore matrix, introduced by , is a matrix defined over a finite field. When it is a square matrix its determinant is called a Moore determinant (this is unrelated to the Moore determinant of a quaternionic Hermitian matrix). The Moore matrix has successive powers of the Frobenius automorphism applied to the first column, so it is an ''m'' × ''n'' matrix
:M=\begin
\alpha_1 & \alpha_1^q & \dots & \alpha_1^}\\
\alpha_3 & \alpha_3^q & \dots & \alpha_3^}\\
\end
or
:M_ = \alpha_i^} \left( c_1\alpha_1 + \cdots + c_n\alpha_n \right),
where c runs over a complete set of direction vectors, made specific by having the last non-zero entry equal to 1, i.e.
:\det(V) = \prod_ \prod_\alpha_ + \alpha_i \right).
In particular the Moore determinant vanishes if and only if the elements in the left hand column are linearly dependent over the finite field of order ''q''. So it is analogous to the Wronskian of several functions.
Dickson used the Moore determinant in finding the modular invariants of the general linear group over a finite field.
==See also==

* Alternant matrix
* Vandermonde determinant
* List of matrices

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Moore matrix」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.